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Abstract 

The three principal mechanisms of plastic flow in crystalline solids at elevated temperature are 
crystal slip, grain boundary sliding, and diffusional flow. All three mechanisms involve the 
diffusion of atoms as the rate-controlling process, either in the lattice or in the grain boundary. 
Under the correct conditions of microstructure, temperature, and stress, each mechanism can 
lead to Newtonian-viscous behavior. That is, the strain rate increases linearly with the applied 
stress. In the case of crystal slip, Newtonian-viscous behavior is observed at very ‘low stresses 
and, in pure metals, is known as Harper-Dom (H-D) creep. This Newtonian behavior can also 
be observed in anisotropic crystalline solids that are deformed under thermal cycling 
conditions. The dislocation density and the stacking fault energy are important structural 
factors that contribute to crystal slip-controlled Newtonian flow. In the case of grain boundary 
sliding, Newtonian-viscous behavior is observed in fine-grained, solid solution alloys under 
conditions where grain-boundary sliding is accommodated by dislocation glide controlled by 
the diffusion of solute atoms. In the case of diffusional creep, which is rigorously described by 
the Nabarro-Herring (N-H) theory, the creep rate is controlled by grain size and by the rate of 
atom diffusion in the lattice and in the grain boundary. Deformation mechanism maps describe 
the conditions of dislocation density, grain size, stress, and temperature under which each 
deformation process can be expected to be rate-controlling. 



Historical Perspective 

Plastic flow in crystalline solids, and in particular metallic polycrystals, is normally non- 
Newtonian. That is, the flow stress-strain rate relation is generally not linear; rather, the flow 
rate increases exponentially with stress. There are a number of examples, however, where 
Newtonian-viscous behavior is in fact observed. 

The first evidence for such behavior was by Chalmers, in 1937, who studied the creep of tin 
single crystals at room temperature and at low stresses (1). Chalmers showed the creep rate to 
be constant over a small strain, in the order of 10-h to 10-5, and also discovered that the creep 
rate increased linearly with the stress. This behavior was named “microcreep” because it was 
observed only at small strains. Chalmers related these results to the motion of dislocations 
(dislocation theory had been introduced just three years earlier) but did not attempt to develop a $ 
specific model. Chalmers’ work created quite a stir among metal plasticians. This was because 
an example had been found in metallic solids that could be related to the Newtonian flow of 
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liquids, in which diffusion of atoms was known to be the rate-controlling process., - i? 
9 

In 1941, Kauzmann developed a creep relation based on Eyring’s thermally-activated, reaction- 
rate, theory (2), which supported Chalmers’ results. Using dislocations as the source of slip, 
with an activation energy that was influenced by stress, Kauzmann obtained a hyperbolic sine 
relation for creep. This theory predicted Newtonian-viscous flow at low stresses and an 
exponential dependence with stress at high stresses. The theory, however, did not allow a 
quantitative prediction of the actual creep rate at a given stress. 

In 1948, Nabarro pointed out the inadequacies of the Kauzmann model (3). In addition, he 
attempted to relate the creep of tin to his diffusional creep model but concluded that his theory 
could not explain the limiting strain observed for the “microcreep” process. 

After the publications of Chalmers and Nabarro, the next evidence for Newtonian flow came 
from low-stress creep data of polycrystals tested near the melting temperature. These results 
were found for polycrystalline copper, in 1949, by Udin, Shaler, and Wulff (4) and for 
polycrystalline gold, in 195 1, by Alexander, Dawson, and Kling (5). These data have been 
interpreted as evidence for the diffusional creep process of Nabarro and Herring. 

In 1957, Harper and Dorn (6) studied the creep of polycrystalline aluminum near its melting 
temperature and showed Newtonian flow behavior. The observed creep rates, however, were 
shown to be higher than those predicted by the diffusional creep process. Because of this 
discrepancy, attempts were made to suggest that it was the subgrain boundaries present within 
the grains, rather than the grains, that could be the sources of sinks and vacancies. In this way, 
the predicted creep rate from the Nabarro-Herring theory could then be rationalized with the 
Harper and Dom results. This has been proven to not be the mechanism, and it is now generally 
accepted that Harper-Dorn creep is an independent mechanism based on a diffusion-controlled, 
dislocation creep, process. In 1984, Wu and Sherby (7) showed that Chalmers’ microcreep data 
are in agreement with this Harper-Dorn creep mechanism. 

The discussion thus far has been confined to Newtonian-viscous flow in crystalline solids 
obtained under isothermal conditions. Newtonian-viscous flow can also occur when certain 
metallic materials are deformed under thermal cycling conditions. Perhaps the first investigator 
on this finding was Sauveur (8); in 1924, he showed that iron became extremely weak when 
creep tested under phase transformation conditions (alpha to gamma and back to alpha). Koref 



(9), in 1926, and Schiel (lo), in 1932, used the term “amorphous plasticity” to described this 
type of plasticity, thus relating it to a Newtonian-viscous, liquid-like, behavior. 

A mechanical model to interpret transformation plasticity was given by Greenwood and 
Johnson (11) in 1965. Subsequently, Lobb, Sykes, and Johnson (12), in 1972, showed 
Newtonian-viscous flow occurred in zinc and alpha uranium when creep tested under thermal 
cycling conditions where no phase transformations occur. These results are related to the 
development of internal stresses arising from crystal anisotropy of the thermal expansion 
coefficients in these non-cubic structure metals. 

Research on thermal cycling of fiber-and-particle-reinforced aluminum composites revealed 
similar Newtonian-viscous behavior (13). In this case, the internal stress is created from 
differences in the thermal expansion coefficients of the non-metallic reinforcing material and 
the aluminum matrix. An internal stress (super-plasticity) model was developed by Wu, 
Wadsworth, and Sherby (14) in 1987. The model gave predictions which were in quantitative 
agreement with experimental data for zinc, uranium, and aluminum matrix composites. 

Grain boundary sliding in fine-grain materials can lead to Newtonian-viscous flow. Fukuyo et 
al (15), in 1991, showed that Class I solid solution alloys containing fine grains exhibited 
Newtonian-viscous flow. In these cases, the rate-controlling process was grain boundary sliding 
accommodated by solute drag dislocation glide. 

Examples for Newtonian-Viscous Flow in Crystalline Solids 

The following examples are shown, in the order of historical perspective, for each of the four 
categories of Newtonian-viscous flow described above. These are Harper-Dorn creep, Nabarro- 
Herring diffusional creep, internal-stress-assisted (super-plastic) creep, and grain boundary 
sliding creep. 
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1. Haruer-Dorn creen 

Figure 1 shows creep data for pure aluminum plotted as lattice-diffusion-compensated, steady 
state creep rate as a function of the modulus-compensated stress. The Harper-Dorn viscous- 
creep region is observed at low stresses where the stress exponent is unity. At high stresses 
power-law creep is observed where the stress exponent is five. The solid line in the figure is the 
predicted curve from an internal stress-assisted dislocation creep model (16). This model is 
based on the assumption that moving dislocations are envisioned to be both aided and inhibited 
by the presence of internal stress fields that arise from stationary dislocations. Specifically, it 
was proposed that, at any given moment, one half of the moving dislocations are influenced by 
an internal stress that adds to the applied stress, and the remaining half of the moving 
dislocations are influenced by an internal stress that subtracts from the applied stress. In 
equation form, the steady state creep rate, i, as a function of the applied stress, 0, is described 
as follows: 

R” + fo 

In this equation, A,, is a material constant that describes power law creep, b is the burgers 
vector, n is the exponent for power-law creep (n=5), E is the dynamic, average, unrelaxed, 



polycrystalline, Young’s modulus, Deff is the effective diffusion coefficient which incorporates 
contributions from both lattice and dislocation pipe diffusion, and Oi is the internal stress. 

At low stresses, where (T < Oi, equation (1) reduces to the Harper-Dorn, Newtonian-viscous, 
creep relation: 

i=ApL. n &!$ (“)“-‘0 
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At high stresses, where G >> Gi, equation (1) reduces to the power- law creep relation: 
Da CJ n -- 
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Figure 1. 
Diffusion-compensated-steady- 
state-creep rate vs. modulus- 
compensated stress data for pure 
aluminum in the power law and 
Harper-Dorn creep regimes. 
The solid line is the predicted 
curve from equation (1) with Oi/E 
= 2.5 x 10-6. (16) 

The value of the modulus-compensated internal stress for pure aluminum, to make’the good fit 
shown in Fig. 1, is: 

- = 2.5. 1O-6 Oi 
c 

This value of internal stress has ieen shown to be related to the dislocation density that is 
predicted from the Taylor equation for plastic yielding in crystals. Figure 2 shows a plot of the 
modulus-compensated internal stress as a function of dislocation density, p, for aluminum and 
alpha zirconium. These are the only two metals where oi/E and p have been measured. The data 
fall close to the predicted line given by the Taylor equation, and give strong support for the 
internal stress-assisted model described by equation (1). A number of alternative creep models 



for Harper-Dorn creep have been proposed (17-22). The correct model requires taking into 
account a number of factors that influence Harper-Dorn creep. These are dislocation density 
and substructure, stacking fault energy, solute atom-dislocation interactions, grain size, particle 
size and distribution, and atom mobility. An example of the complexity of Harper-Dorn creep 
is the influence of annealing or soaking time at high temperature on the creep rate in the 
Newtonian-viscous regime (23,24) which is not yet resolved. 
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Comparison of the micro-creep 
data of Chalmers for pure tin with 
a constant structure creep relation. 
The steady state creep data for 
pure tin is included for * 
comparison. All data are plotted 
as effective-diffusivity- 
compensated strain rate as a 
function of modulus-compensated 
uniaxial stress. (7) 
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The “microcreep” tin data of Chalmers described earlier has been explained by the internal- 
stress-assisted model (7,14). The “microcreep” data (obtained at 0.57 Tm) and the low stress 
creep data of Mohamed et al (obtained at 0.99 Tm) are plotted in Fig. 3. The two sets of data 
are widely separated although Newtonian-viscous behavior is observed at low stresses for both 
investigations. The difference in the two data groups is attributed to dislocation density 
differences as well as to differences in dislocation barrier spacing (7,14). 

2. Nabarro-Herring diffusional &eeD 

The schematic model of Nabarro for developing the diffusional creep theory is illustrated in 
Fig. 4. The stress state shown leads to a vacancy gradient from the boundaries in tension to the 
boundaries in compression. The initial dimensions of the sample are given by RSTU. Atoms at 
X and Y move in opposite directions under stress P. This directional migration of vacancies 
under stress leads to a change in shape of the original material. The model leads to the 
following relation: 

i= 14D,b30 
d2kT 

(5) 
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Figure 4. 
A block of metal under shear 
stress P. If the block creeps under 
the stress, atoms at X and at Y 
move in opposite directions (after 
Nabarro). (3) 

In this relation, d is the true grain size and k is the Boltzmann constant. This Nabarro model 
was refined mathematically, although quantitatively unchanged, by Herring (25) in 1950. The 
possible evidence for diffusional creep came soon after the theory was developed from low 
stress creep tests focused on measuring surface and grain boundary energies. These studies 
were with copper (4) and gold (5). These low stress creep results are compared with a number 
of other pure metals in Fig. 5 (26). As can be seen, the copper and gold data fall on the 
predicted line. All the other metals fall above the predicted line showing power law creep. 
Later, creep data at low stresses on a number of metals, where Newtonian-viscous flow was 
observed, were initially interpreted to be evidence of diffusional creep (27). An alternative 



view, however, was presented indicating that Harper-Dorn creep was more likely to be the rate- 
controlling process in these new studies (16), with one exception, i.e., delta iron.,In the case of 
copper, the data shown in Fig. 5, together with other data on low stress creep of copper, 
indicated that Harper-Dorn creep is the dominant process at low stresses (23). ’ 
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Figure 5. 
Comparison of creep behavior of 
various pure polycrystalline 
metals with Nabarro-Herring 
diffusional creep theory. Cu and 
Au appear to agree with the 
Nabarro-Herring prediction at 
low stresses but Al does not. (26) 

Newtonian-viscous flow has been observed at low stresses at intermediate temperatures. These 
data have been interpreted as diffusional creep but with grain boundary diffusion as the rate- 
controlling process. Coble was the first to suggest this process, in 1963; the mechanism is now 
known as Coble diffusional creep (28). It has been shown, however, that these intermediate 
stress data are best explained by either Harper-Dorn creep or grain boundary sliding (24). 

3. Internal-stress-assisted (super-plastic) creep 

Thermal cycling during creep of many metal-base alloys can lead to Newtonian-viscous flow. 
An example is that of 6061 aluminum containing 20% SIC whiskers. Newtonian-viscous flow 
leads to ideal superplastic behavior and high elongations are achieved. An example,is shown in 
Fig. 6. Only 12% elongation is achieved in this composite when deformed isothermally at 
450°C and at a strain rate of i = 10W4s-‘. On the other hand, the same composite exhibits 
1400% elongation when deformed under thermal cycling conditions, (100 t) 450°C at 100 
seconds per cycle) under a stress of 10 MPa (29). The basis of understanding this behavior is 
that internal stresses are developed at the interfaces between the aluminum matrix and the SIC 
fibers. This is because the expansion coefficient of aluminum is six times larger than that of 
silicon carbide fibers. These internal stresses will relax by plastic deformation in the aluminum 
matrix to the value of the local interfacial yield stress of the material. It is this remaining local 
yield stress, which is the internal stress, Oi, in the creep model given earlier as equation (1). 



The predictive nature of the internal stress-assisted plasticity model is shown in Fig. 7 for a 
2024 aluminum alloy containing 10% and 20% Sic whiskers. It is seen that the diffusion- 
compensated strain rate is higher for the thermally-cycled materials than for the isothermally- 
tested materials. Of significance is the higher rate of creep of the 20% Sic, material compared 
to the 10% Sic, material under thermal cycling conditions. This is because the internal stress, 
Oi (equal to the yield strength of the composite at the interface), is higher for the 20% Sic, 
material than for the 10% Sic,,, material (as observed in the isothermal data). The solid lines 
are the predicted curves from equation (l), which agree well with the data showing Newtonian- 
viscous creep at low stresses for the thermally-cycled materials. 

Figure 6. 
Tensile ductility of Al-606 l--Sic, 
reinforced composite. (29) 

Left: The untested condition. 
Center: 12% elongation under 

isothermal testing at 450°C and 
at t? = 10-4s-‘. 

Right: 1400% elongation under 
thermal cycling conditions 
(100++45O”C) at o=lO MPa. 
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by the I.S.S. model 
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Figure 7. 
Diffusion-compensated strain 
rate as a function of modulus- 
compensated stress for thermal 
cycled and isothermal creep data 
for Al-2024 alloy composite 
containing lO%SiC, and 20% 
Sic,. (30) 

The manner in which silicon-carbide whiskers flow during plastic deformation of the aluminum 
composites, differs dramatically under thermal cycling condition compared to isothermal 
conditions (30, 31). Figure 8 shows the difference in flow behavior of an extruded 2024-2096 
SiCw composite conducted in compression under isothermal and thermal cycling conditions. 
The sample that was deformed isothermally exhibited very limited reorientation of the 
whiskers. Furthermore, extensive surface cracks were observed in the sample. On the other 
hand, the sample that was deformed under thermal cycling conditions, to the same strain, shows 
that nearly all whiskers were no longer in the original longitudinal direction. Clearly, 
Newtonian-viscous flow of the metal matrix accelerates the reorientation of the whiskers. No 
surface cracks were observed in the thermally-cycled samples. 
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Figure 8. 
Illustration that Newtonian- 
viscous flow in a whisker 
reinforced Al-2024-207~ SIC, 
composite leads to crack-free 
plastic flow and to rapid 
reorientation of whiskers. (31) 
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Internal-stress plasticity as modelled by equation (1) has also been applied to metals that have 
anisotropic thermal expansion coefficients such as hexagonal close-packed zinc and body- 
centered orthorhombic alpha uranium. The predicted creep behavior of these anisotropic metals 
is shown in Fig. 9. As can be seen, the predicted curves agree remarkably well with 
experimental data which include variables in the temperature range of thermal cycling (zinc 
tests) and in the cycling rate given as seconds per cycle (zinc versus uranium tests). At low 
values of the modulus-compensated stress, the model predicts, and the data demonstrate, the 
existence of ideal Newtonian-viscous flow (n=l); under these experimental conditions, 
superplastic behavior is indeed observed (12- 14). 

4. Grain-boundary sliding creeo 

It is generally accepted that grain-boundary sliding is the dominant mechanism for superplastic 
flow of fine-grained materials at high temperatures. The stress exponent for this mechanism is 
typically two, hence most superplastic materials, although highly strain-rate sensitive, do not 
show Newtonian-viscous behavior. The grain boundary sliding model of Ball and Hutchinson 
(32), however, illustrates the possibility of achieving Newtonian-viscous creep in fine-grained 
materials. The Ball-Hutchinson model is based on a grain boundary sliding process 
accommodated by slip and a schematic of the model is shown in Fig. 10. 

Figure 10. 
Model illustrating grain 
boundary sliding accommodated 
by dislocation motion. involving 
the sequential steps of glide and 
climb. (15) 

As can be seen, the slip-accommodation process involves the sequence step of glide and climb 
of dislocations. When, climb is the rate-controlling step, the strain rate sensitivity exponent is 
0.5 (that is n = 2) because of the extra stress term from dislocation pile-up at the head of the 
climbing dislocation. This leads to the grain boundary sliding relations developed by Ball and 
Hutchinson, and later expanded by Langdon (33), and by Mukherjee (34). When glide is the 
rate-controlling processing step, however, the strain-rate-sensitivity exponent is unity because 



there is no pile-up stress. Since glide and climb are sequential processes, the slower of the two 
processes is rate-controlling. Fukuyo et al (15) showed that this could occur in fine-grained 
Class I solid solution alloys since in these alloys the glide step (solute-drag controlled 
dislocation creep) is often the slowest process. On the other hand, fine-grained Class II solid 
solution alloys, where dislocation climb is the rate-controlling step, should exhibit strain-rate- 
sensitivity exponents equal to 0.5. 

The predictions of Fukuyo et al have been confirmed for a number of fine-grained Class I solid 
solution alloy systems studied at high temperatures, as can be seen in Fig. 11. The strain-rate- 
sensitivity exponent, m, is shown as a function of strain rate. The strain rate is normalized to 
the strain-rate-sensitivity exponent equal to 0.3 in order to assess the different Class I solid 
solution alloys to a common base. Starting from the lowest strain rate tests, where m is equal to 
0.5, is the range where grain-boundary-sliding accommodated by dislocation climb is rate- 
controlling. With an increase in strain rate, the value of m increases towards unity: This is the 
range where grain-boundary-sliding accommodated by solute-drag-controlled dislocation glide 
is rate-controlling; i.e. it becomes a slower process than dislocation climb. At yet higher 
stresses, slip deformation becomes the more facile process, m decreases, and if solute drag slip 
is rate-controlling the m values become equal to 0.33. 
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Figure 11. * 
Influence of normalized strain rate 
on the strain-rate-sensitivity’ 
exponent, m, for superplastjc 
materials considered as fine-grained 
Class I solid solution alloys. (15) 

Ideal Newtonian-viscous flow was found in fine-grained ultrahigh carbon steels (UHCSs) 
containing a large amount of aluminum following the original work of Fukuyo et al. Some of 
these data are shown in Fig. 12 where the flow stress is plotted as a function of strain rate for 
three UHCSs containing 7 to 10% aluminum (35-37). At low strain rates, the strain-rate 
sensitivity exponent m is equal to 1, and at high strain rates the strain-rate-sensitivity exponent 
m is equal to 0.33. These are in agreement with the expected behavior of fine-grained Class I 
solid solution alloys when slip is rate-controlling. 
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Figure 12. 
Quasi-super-plasticity (m = 0.33) and 
ideal grain-boundary sliding (m = 
1.0) are observed in UHCS-high 
aluminum alloys. (35, 36) 

Conclusions 

Newtonian-viscous flow is observed in crystalline solids in all three of the deformation 
mechanisms controlling plastic flow, namely crystal slip, diffusional creep, and grain boundary 
sliding. In most cases, Newtonian-viscous behavior is only observed at low strain rates, low 
stresses, and high temperatures where either slip creep or diffusional creep is controlling the 
deformation process. Newtonian-viscous flow is obtained by the thermal cycling of 
anisotropically expanding materials and is controlled by an internal-stress-assisted dislocation 
creep process. Fine-grained Class I solid solution alloys exhibit Newtonian-viscous flow at 
intermediate to high temperatures that is controlled by a grain-boundary-sliding process 
accommodated by solute-drag dislocation glide. 
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